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Divergent asymptotic expansions in quantum chemistry often must be evalu- 
ated on Stokes lines, where the form of the expansion changes discontinuously 
and might appear to be ambiguous. Towards clarifying the use of  asymptotic 
expansions on Stokes lines we discuss by numerical example the Airy function 
Bi(x) for real, positive x. Two physical problems to which this example is 
relevant, among others, are the Rayleigh-Schr6dinger perturbation theory for 
the LoSurdo-Stark effect in hydrogen and the JWKB connection-formula 
problem, for which real series are associated with complex sums. The various 
roles of partial summation, Pad4 approximants, and Borel summation are 
compared. In addition, a derivation is given for an integral that occurs in a 
simple proof  of the Borel summability of asymptotic expansions for the 
confluent hypergeometric function, which function is fundamental to certain 
quantum chemistry problems, and which integral is given incorrectly in several 
standard references. 
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I. Introduction 

A divergent asymptotic expansion is often the simplest form for solution of the 
Schr6dinger equation. The Rayleigh-Schr6dinger perturbation theory (RSPT) 
for hydrogen in an electrostatic field (the LoSurdo-Stark effect) is a prime 
example. In practice, the accuracy of partial sums of a divergent series is deter- 
mined by the smallest term. If  the solution is needed to higher numerical precision, 
more sophisticated "summation" methods must be used, such as (in the case of 
the LoSurdo-Stark effect) Pad6 approximants [1-3] and /or  Borel summation [4]. 
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Besides limited accuracy of  partial sums, asymptotic expansions have a second 
complication: there are lines (in the complex plane) across which the coefficients 
of  exponentially small terms in the expansion change discontinuously - so-called 
Stokes lines. Often the solution is needed for values of the physical variable on 
a Stokes line. The LoSurdo-Stark effect is again such a case, and the Jeffreys- 
Wentzel-Kramers-Bril louin (JWKB) method inside a barrier is a second [5, 6]. 
The question of  how one evaluates the sum of a series where the series is 
undergoing a discontinuous change is a natural source for confusion. The possibil- 
ity for confusion is compounded by the knowledge that sophisticated summation 
techniques can give complex sums to real series (on the Stokes lines) and real 
sums to complex series [5-8]. For example, the analytically continued Borel-Pad~ 
summation and the complex Padr-Pad6 methods applied to the real RSPT series 
in the LoSurdo-Stark effect both give (numerically) the correct complex resonance 
eigenvalue [3,4]. 

The aim of  this article is to clarify two points about the use of asymptotic 
expansions (as they occur in the physical problems we have encountered). (i) 
The first is the summation of  an expansion on its line of discontinuity: what we 
do here is to carry out illustrative numerical calculations by various methods for 
a specific, simple, prototypical example - the Airy Bi function - to demonstrate 
how to resolve the questions of accuracy and ambiguity. (ii) The second point 
is a more technical one. It has to do with a key step in a simple, direct proof  [9] 
of  the Borel-summability of  the asymptotic expansions for the confluent hyper- 
geometric function, special cases of which occur in several fundamental applica- 
tions in quantum theory, as well as outside. In the derivation, there is a crucial 
integral that has been given incorrectly in many standard references, and the 
evaluation of which might be considered the only "difficult" part of the derivation. 
We evaluate that integral here in a straightforward way by using the Laplace- 
transform convolution theorem. 

2. Numerical evaluation of the Airy Bi(z) function 
from its asymptotic expansions 

The focus of  our numerical illustration is the Airy Bi(z) function. In quantum 
mechanics, the Airy equation is the Schr~dinger equation for motion in a uniform, 
constant field, and it appears in discussions of  the JWKB method at a linear 
turning point. Bi(z) is a solution of 

d2Bi(z) 
dz 2 - zB i ( z )  (1) 

that grows exponentially as z--> ~ .  However, the positive real axis, z > 0, is a 
Stokes line of  the asymptotic expansion for Bi(z). 

Suppose one wants to evaluate Bi(z) for z >  0 from its asymptotic expansion. 
There are three asymptotic expansions for [z I large in the right half-plane given 
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in standard reference works [10]: 

oo 

Bi(z) ~ 7"g-1/2z -1/4 e ~ ~ eke -k  -- i17]'-1/2z -1/4 e -~ ~ Ck(--~) -k,  
k = O  k = O  

[-~r <a rg  (z) < ~'/2 (sense of Poincar6), 

- -~-  < arg (z) < 0 (sense of Borel)], (2) 

oo 

Bi(z)-cr-1/2z-1/4er ~ Ck~-k+i�89 -~ • ck(--~) -k, 
k = O  k = o  

[ - 7 r / 2 <  arg (z) < 7r (sense of Poincar~), 

0 < a r g  (z) 2 < ~ "  (sense of Borel], (3) 

Bi(z) ~ 7"l"-U2z - 1 / 4  e ~ ~ ck~ -k, [ -~- /3  < arg (z) < ~-/3 (sense of Poincar6)]. 
k = O  

(4) 

The coefficients ck, which grow like ( k - 1 ) l / ( 2 k + ~  -) for large k, are given by 

(5) 2k+l .  �9 ck= r( )r(1)2 kr 

The parameter ~ is 

(6) 

In most references, the domains of applicability that are given are respectively, 
-~r < arg (z) < ~r/2, -~r /2  < arg (z) < ~-, and -~r /3  < arg (z) < 7r/3 (the ones indi- 
cated above by "sense of  Poincar6"). All three would appear to be valid for 
z > 0[arg (z) = 0]. The question we address is, which of the three expansions should 
be used to evaluate Bi(z) on the positive real axis, z > 0? 

The expansions differ in the coefficients of the exponentially small terms (e-C), 
co 

which are +i, - i ,  and 0. The Poincar6 definition, that ~k=o ak xk is an asymptotic 
power series for f (x )  if 

n 

f ( x ) - ~ o  akxk = O(IX[n+l)' as X~ +0, (7) 

does not distinguish among exponentially small terms and includes the real axis 
for all three. The numerical result surely depends on which expansion is used. 

From one point of  view, the question is a practical one. One should recall that 
partial sums of asymptotic expansions, because of their divergent character, 
approximate a function with strictly limited accuracy. One should first specify 
the method to be used to calculate with the asymptotic expansion, then pick the 
expansion that give the smallest error. From this point of view, the error is always 
nonzero, and there is no unique choice of expansion independent of the calcula- 
tional procedure. If partial summation is the method, then on z >  0 the real 
expansion (4) gives smaller errors in approximating Bi(z), which is real for real 
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z, than (2) and (3), which differ from (4) only by imaginary terms. Thus for 
partial summation on z > 0, the answer to the question is the real expansion (4). 
There are, however, other computational methods to be discussed below. 

From a second point of  view, the question is in part theoretical: to determine a 
procedure that uniquely recovers the function from the expansion (with zero 
error). One such procedure has been known for 88 years - the summation method 
of  Borel [11]. Borel's method is applicable [9] to expansions (2) and (3) above 
to give Bi(z)  on the domains labeled "sense of  Borel," but not to (4). That is, 
the series that gives the smallest errors for partial summation on the real axis is 
not Borel summable to Bi(z).  To use (4) with Borel summation would give the 
wrong answer. Note that the domains for Borel summability, -~r < arg ( z ) <  0, 
and 0 < a r g  (z) 2 < ~Tr, are smaller than for the sense of  Poincar6 and are non- 
overlapping. The positive z axis, arg (z) = 0, would appear to be excluded from 
the standard definition of  the Borel method applied to Bi(z),  but it is more or 
less trivially included by analytic continuation (to be elaborated on below). In 
fact there is a standard set of  uniqueness theorems of Watson [12], Nevanlinna 
[13], and Carleman [14] attaching a specific analytic function to an asymptotic 
expansion, and for Bi(z)  the applicability of the Borel method for Bi(z)  implies 
these standard uniqueness theorems. Further, if some other summation method 
works, then either it must be consistent with these theorems, or it will imply a 
new (as yet undiscovered) uniqueness theorem. In contrast to the first point of  
view, at any particular value of z the expansion is unique depending only on 
arg (z), but independent of  the calculational method. This applies to the boundary, 
arg (z) = 0, but the boundary must first be assigned either t.o the sector below or 
above. How this works computationally will be seen immediately below in the 
Pad6-Pad6 approach. It should be emphasized that when computationally imple- 
mented, a summation technique like the Borel method is capable of  giving the 
desired analytic function to zero error. This is particularly important if the only 
approach one has available for calculating the function is through the asymptotic 
expansion. 

We illustrate these considerations with numerical calculations. We use the 
asymptotic expansions to compute Bi(z) by three techniques and see which come 
out correct. The first computational technique is partial summation (the original 
sense of an asymptotic expansion). The second is Pads approximants [15], which 
require only a few lines of computer code, and which are often used heuristically 
to speed convergence or to induce convergence when there is divergence. (Here 
they do not work on the Teal z > 0 axis.) For the third technique we might have 
used, in the light of the above discussion, Borel summation, as was implemented 
in [4]. However, we use instead a more pedestrian method that involves using 
Pad6 approximants twice [3], but that otherwise appears to give numerical results 
that are the same as the Borel method [4], which in turn is not surprising in view 
of  the discussion in the preceding paragraph. The computer-programming effort 
is only a little greater than using Pad6 approximants once. The Pad~-Pad6 method 
as we implement it here consists of (i) calculating the sums of the power series 
in Eqs. (2)-(4) and their successive derivatives with respect to ~'-~ at some 
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~'int) by Pad6 approximants to obtain intermediate complex value zi.t (and thus -1 
the coefficients of the convergent power series in ( U  1 -  -5  r for the functions 
whose Borel-summable asymptotic expansions are the power-series in Eqs. (2)- 
(4), followed by (ii) partial summation (or Pad6 summation, since the computer 
subroutine is already at hand) of these convergent power series in (r - ~n~t) at 
the desired final value of z, which in our case is on the real z (and consequently 
real ~-~) axis (i.e. analytic continuation). Multiplication by z-1/4e :~r" and combina- 
tion of the results for the two subseries [in the cases of Eqs. (2) and (3)] give 
the Pad6-Pad6-based values for Bi(z) using Eqs. (2)-(4). [We remark, but do 
not illustrate numerically, that the final value of  z is not only permitted to be on 
the real axis, but it may even be complex on the opposite side of the real axis 
f r o m  Zint, SO long as [r r < ir 

Now let us pick a value of z, say z = 2.5, and compute Bi(z). The results are 
displayed in Table 1. 

Note first that the smallest term in the partial summations occurs at n = 6. The 
best partial sum, obtained by stopping with n = 5, is Bi(2.5) - 6 .48213. . . ,  which 
coincides with the exact result of  6.48166.. .  to three significant figures. The error 

Table 1. Calculation of Bi(z) a at a single point, z = 2.5, from its asymptotic expansions by partial 
summation, Pad6 approximants, and analytically continued Pad6-Pad6 approximants (about inter- 
mediate point Zin t = 2 - i). The Pad6-Pad6 approximants of the formally complex expansion, Eq. (2) 
of the text, are approaching the exact value o$ Bi(2.5) a 

Formally real expansion [Eq. (4)] Formally complex 
expansion [Eq. (2)] 

Partial Pad6 Pad6-Pad6 Pad6-Pad6 
sum approximant ~ approximant b approximant b,c 

0 6.25758 6.25758 6.25758 + i0.00000 6.25758 - i0.01609 
1 6.42248 6.42695 6.42105 + i0.00564 6.42106- i0.01002 
2 6.45594 6.46446 6.48566+ i0.02816 6.48565 + i0.01245 
3 6.46894 6.47766 6.50425 + i0.04614 6.50424 +/0.03041 
4 6.47642 6.49052 6.47577 + i0.03270 6.47577 +/0.01697 
5 6.48213 6.53973 6.48213 + i0.01972 6.48213 + i0.00400 
6 6.48758 6.46116 6.48442 + i0.02555 6.48441 + i0.00983 
7 6-49380 6.48162 6.47889 + i0.02488 6.47889 + i0.00915 
8 6.50209 6.50666 6.48188 + i0.01766 6.48188 + i0.00193 
9 6.51469 6.44748 6.48210+ i0.01853 6.48210+ i0.00281 

10 6.53624 6.48063 6.48129 + i0.01738 6.48129 +/0.00166 

20 620.87316 6.44587 6.48132 + i0.01576 6.48132 + i0.00003 
30 2.372 • 109 6.43092 6.48165 + i0.01573 6.48165 + i0.00000 
40 3.131 x 1017 6.46283 6.48166 + i0.01572 6.2~8166- i0.00001 

a The exact value of Bi(2.5) is 6.48166... 
b Let [�89 denote the greatest integer ~< �89 Let [ N / M ]  denote the Pad6 approximant with numerator 
of degree N and denominator of degree M. The Pad6 approximants listed are [[�89189 + 1)]] 
~ All coefficients of the divergent expansion through order n were used to generate the convergent 
series at the intermediate point z~,,t = - i 
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is 0.00047. After the 5th partial sum, the error in the partial sums increases 
factorially fast with n. 

Note second that direct Pad4 approximants do not help. One cannot obtain with 
certainty even three significant figures from the results given in Table 1. It is 
perhaps significant that, in contrast to the partial sums, the Pad6 approximants 
stay close to the exact value of Bi, but they do not approach the accuracy of the 
5th partial sum, let alone improve on it. 

Off the real axis the situation is markedly different. Information in Table 2 pertains 
to z = 2 -  i, [arg (z) = - 7 r / 6 . 7 7 . . . ] ,  a value of z that still falls inside the Poincar6 
domains of  all three expansions. Note first that the partial sums of  the formally 
complex series (2) are significantly better than those of the real series (4). 
Otherwise they behave as at z = 2.5, except that the term smallest in magnitude 
occurs at n = 5 (vs 6). Note second that the Pad6 approximants, in marked contrast 
to the case for z = 2.5, appear to converge for all three series. The converged 
value for the complex series (2) is the correct one for Bi(2-  i), while the value 
obtained from series (4) is the correct value for Bi(2-  i)+ iAi(2 - i), where Ai(z) 
is the Airy function that decreases exponentially as z ~ +0o. (The value that would 
be obtained from series (3) is the correct value for Bi (2 - i )+2 iA i (2 - i ) . )  If 
instead we had taken z = 2 +  i, then (3) would have yielded the correct value, and 
(2) and (4) would have yielded Bi (2+ i ) -2 iA i (2+ i )  and Bi (2+ i ) - iA i (2+ i ) ,  

Table 2. Calculation of B i ( z )  a at a single point, z = 2 - i, the intermediate point for Table 1, from its 
asymptotic expansions by partial summation and Pad6 approximants. The Pad6 approximants of the 
formally complex expansion, E q .  (2) of the text, are approaching the exact value of B i ( 2 -  i) a 

Formally real expansion [ E q .  (4) ]  Formally complex expansion [ E q .  (2) ]  

Partial Pad6 Partial P a d 6  

n sum approximant b sum approximant b 

0 0 ,65277  - i 2 .46974  0 .65277  - i 2 .46974  0 .69441 - i2 .47085  0.69441 - i2 .47085 

1 0 .71768  - i 2 . 5 1 5 7 9  0 , 7 2 0 2 0 - i 2 . 5 1 5 5 3  0 . 7 5 8 3 1 - i 2 . 5 1 7 7 0  0 . 7 6 0 8 4 - i 2 . 5 1 7 4 1  

2 0 .73671 - i 2 .51429  0 ,73987  - i2 .50977  0 . 7 7 7 4 0 -  i2 .51589  0 . 7 8 0 5 9 -  i2 .51143 

3 0 .74297  - i 2 .50816  0 ,74097  - i2 .50261 0 . 7 8 3 7 4 -  i2 .50990  0 . 7 8 1 7 0 -  i2 .50431 

4 0 .74358  - i2 .50223 0 .73655  - i2 .50164  0 .78425  - i2 .50393 0 . 7 7 7 2 7 -  i2 .50333 

5 0 . 7 4 0 5 6 -  i2 .49776  0 . 7 3 6 6 6 -  i2 .50430  0 . 7 8 1 3 2 -  i2 .49943  0 .77738  - i2 .50600  

6 0 .73473  - i2 .49608  0 .73823 - i 2 .50359  0 ,77543 - i2 .49783 0 .77895 - i2 .50529  

7 0 . 7 2 7 2 2 -  i2 .49938 0 .73741 - i2 .50290  0 .76791 - i 2 .50100  0 .77813 - i2 .50460  

8 0 . 7 2 1 4 8 -  i2 ,51094  0 . 7 3 7 2 9 - i 2 . 5 0 3 6 5  0 . 7 6 2 3 2 - i 2 . 5 1 2 7 0  0 . 7 7 8 0 1 - i 2 . 5 0 5 3 5  

9 0 .72687  - i 2 .53350  0 .73775  - i2 .50343 0 . 7 6 7 3 4 -  i2 .53524  0 ,77847  - i2 .50513 

10 0 . 7 6 4 4 7 - i 2 . 5 6 1 5 4  0 .73742  - i 2 . 5 0 3 2 6  0 . 8 0 5 5 4 -  i2 .56283 0 ,77813 - i2 .50496 

15 - 6 . 0 8 7 0 3 +  i l . 9 6 9 5 2  0 . 7 3 7 5 2 - i 2 . 5 0 3 3 6  - 6 . 0 1 1 4 5  + i2 .04351 0 . 7 7 8 2 4 - i 2 . 5 0 5 0 6  

20  0 . 7 3 7 5 2 -  i2 .50339 0 .77823 - i2 .50509  

25 0 .73751 - i2 .50339 0 .77823 - i 2 . 5 0 5 0 9  

30 0 .73751 - i 2 . 5 0 3 4 0  0 .77823 - i2 .50510  

a The exact value of Bi(2  - i) to six digits is 0.77823 - i 2 . 50510  

b L e t  [�89 ] denote the greatest integer --< �89 L e t  [ N / M ]  denote the Pad6 approximant with numerator 
of degree N and denominator of degree M. The Pad6 approximants listed are [[~n]/[�89 + 1)]]  
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respectively. This is to emphasize that (2) is the appropriate expansion for Bi(z) 
when 2 - ~ r  < arg ( z ) < 0 ,  that (3) is appropriate when 0 <  arg ( z ) < ~ r ,  and that 
arg(z) = 0 is the boundary between the two regions. 

Finally, we return to the last two columns in Table 1. Here the Pad6 approximants 
have been used to evaluate the power series and its successive derivatives at an 
intermediate point, arbitrarily taken to be z = 2 - i, to generate a new power series 
at that point. This new power series was then summed at the real point z = 2.5 
(by Pad6 summation, only.because it was convenient - partial summation of this 
new power series would have sufficed). The results for the formally real expansion 
(4) give not Bi(2.5) but Bi(2.5) + iAi(2.5), while those for the formally complex 
expansion (2) give Bi(2.5). This clearly shows by direct computation how the 
formally complex expansion (2) gives the correct real value for Bi(z) on the real 
axis by a procedure that involves continuation to the real axis from below. 

Thus these numerical computations provide the following "answer" to the ques- 
tion of which expansion to use for Bi(z) on z > 0 :  The unique expansions 
associated with Bi(z) are the formally complex ones, (2) and (3). The positive 
real axis z > 0 is a boundary between the two. If  the computational technique 
goes beyond partial summation, is capable of zero-error, and implies analytic 
continuation (explicitly or implicitly) from below, as in the case here with the 
Pad6-Pad6 method or with the Borel method, then use the formally complex 
expansion (2). From above, use expansion (3). If  Bi(z) is to be only approximated 
by partial summation, for which the error is roughly the size of the first omitted 
term in the series, then the number of imaginary terms that should be kept is 
zero, and the real expansion (4), gives the best approximation by partial summa- 
tion on the real axis. 

[We have not explored here the details of the transition from the real axis to the 
complex plane. That question has been examined for partial summation in a 
related case by Olver [16]. The main picture inferred from Olver's work is that 
the error in partial sums would be least for the real expansion (4) in a domain 
whose shape is approximately parabolic, surrounding the positive real z axis. 
Beyond that domain, the complex expansions (2) and (3) yield smaller errors 
for partial sums.] 

3. Evaluation of an integral related to the Borel summability of asymptotic 
expansions for the confluent hypergeometric function 

The "recipe" for the Borel sum of a power series ~k~0 ak xk can be summarized 
by 

(Borel Sum of  ~ akx k) = e-' ak(xt)k/k! dt. (8) 
0 

If the summation on the right-hand-side has an analytic continuation outside its 
circle of convergence to a neighborhood of the real axis, and if the integral 
converges, then it is called the Borel sum of the series. With the expansion 
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coefficients ak appropriate for the confluent hypergeometric function, it is straight- 
forward [9] to carry out the summation and integration implied by Eq. (8) - with 
one minor diff• the evaluation of an integral over a Gauss 2F1 hypergeometric 
function in terms of  a Whittaker confluent hypergeometric function Wb, m/2 (and 
a gamma function): 

fo '~dt e z t ta -12Fi (~+1m - b, � 89189  - b; a; - t )  = eZ/2F(a) Wb.m/2(z). z - a  
b 

(9) 

The evaluation of this integral is by no means a new, unsolved problem. It is a 
known integral that can be looked up in tables [17]. The "problem" is that it is 
tabulated incorrectly in several places, and it is not obvious how to evaluate it 
directly to check which tabulation is correct. Moreover, if one probes standard 
reference works for a route to the evaluation of Eq, (9), then it is possible to 
encounter what for these authors is even more unfamiliar territory. See for instance 
Eqs. (6) and (10) of Sect. 5.2 of  [18], in which Eq. (9) can be obtained via 
MacRobert 's E-function generalization of  the hypergeometric function. 

In view of  the importance of the confluent hypergeometric function in quantum- 
mechanical applications and the importance of  the consequences of  its Borel 
summability, it is of interest to have easily accessible a simple derivation of Eq. 
(9). The standard integral representation of the Whittaker function is [19] 

Wb, m/2(Z) = Z r e -z/2 e-Z ' tCm-l~/z -b( t+ 1) (m-1)/2+b dt / r ( �89  - b). 

(lO) 
If  a direct, coordinate transformation to turn Eq. (10) into Eq. (9) exists, we 
have not found it. Nevertheless, the desired relation appears to be a simple 
consequence of  the integral representation (10) for Wb, m/2(z) and the Laplace 
transform convolution theorem [20]: 

(f e-Z'A(t) at. (11) 

Take 

A ( t )  = t ("- l ) /2-b( t  + 1)(~-'/2+b/V(�89 }m - b) (12) 

which by Eq. (10) has z -(l+")/z e+Z/2Wb,,~/2(z) for its Laplace transform, and take 

B( t) = ta-"+~'/~+~-lrt a)/V( a - 1 - � 8 9  + b ), (13) 

whose Laplace transform is z-~+O+~/Z-bF(a).  The product of  the Laplace trans- 
forms of A and B is the right-hand side of  Eq. (9). The convolution of A ( t )  and 
B( t )  is just t ~-~ times the standard integral representation of zF~ [10]: 

fo ' A ( s ) B ( t - - s )  ds 
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r(a) 
- r(�89 �89 - b)r(a -�89189 + b) 

x f ~  ds S(m+l) /2-b- l (1  -- S) a (l+m)/2+b-l(1 -- ( - - t ) s )  (m-1)/2+b, (14)  

a-1 1 1 1 1 = t 2 F l ( 5 + s m -  b, ~ - ~ m  - b ;  a; - t ) .  (15) 

Thus, by virtue of the convolution (15), the convolution theorem (11), and the 
product of the Laplace transforms of A and B, one finds that Eq. (9) is verified. 

4. Concluding remarks 

Although a Borel-summable asymptotic power series may be divergent, it is in 
one-to-one correspondence with an analytic function. By implementing numeri- 
cally the Borel procedure, or by using other procedures such as Pad6 approximants 
and the analytically continued Pad6-Pad6 methods illustrated here, the sum of 
the divergent series can be obtained to much higher accuracy than is permitted 
by partial summation. At the Stokes lines of the series, the form of the asymptotic 
expansion changes in the weighting of exponentially small contributions. As one 
approaches a Stokes line, Pad6 approximants that seem to converge away from 
a Stokes line become indecisive. By obtaining the function and its derivatives 
away from the Stokes line by Pad6 approximants of the divergent expansion, the 
function can be evaluated on the Stokes line numerically by summing the conver- 
gent power series back at the Stokes line (analytic continuation). The asymptotic 
expansion that gives the correct answer on the Stokes line by this procedure is 
the Borel summable one [Eq. (2) or (3), but not (4), for the Bi example]. If 
partial sums suffice, the most accurate partial sums are obtained by switching to 
the average of the two expressions [Eq. (4) for the Bi example] in an approximately 
quadratically shaped neighborhood of the Stokes line, as elucidated in particular 
by Olver [16]. 

The confluent hypergeometric functions have Borel-summable asymptotic 
expansions. A pedestrian proof of the summability of the series can be achieved 
by carrying out the procedure analytically. The only difficulty is to evaluate an 
integral that is not particularly elementary and that is unreliably reported in some 
tables of integrals. Towards clarification, we point out (with no claim of priority) 
that the integral follows in an elementary way from the Laplace transform 
convolution theorem. 
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